base equation class
module.exports = Equation;
var vec2 = require('../math/vec2'),
scale = vec2.scale,
multiply = vec2.multiply,
createVec2 = vec2.create,
Utils = require('../utils/Utils');
/**
* Base class for constraint equations.
* @class Equation
* @constructor
* @param {Body} bodyA First body participating in the equation
* @param {Body} bodyB Second body participating in the equation
* @param {number} minForce Minimum force to apply. Default: -Number.MAX_VALUE
* @param {number} maxForce Maximum force to apply. Default: Number.MAX_VALUE
*/
function Equation(bodyA, bodyB, minForce, maxForce){
/**
* Minimum force to apply when solving.
* @property minForce
* @type {Number}
*/
this.minForce = minForce === undefined ? -Number.MAX_VALUE : minForce;
/**
* Max force to apply when solving.
* @property maxForce
* @type {Number}
*/
this.maxForce = maxForce === undefined ? Number.MAX_VALUE : maxForce;
/**
* Cap the constraint violation (G*q) to this value.
* @property maxBias
* @type {Number}
*/
this.maxBias = Number.MAX_VALUE;
/**
* First body participating in the constraint
* @property bodyA
* @type {Body}
*/
this.bodyA = bodyA;
/**
* Second body participating in the constraint
* @property bodyB
* @type {Body}
*/
this.bodyB = bodyB;
/**
* The stiffness of this equation. Typically chosen to a large number (~1e7), but can be chosen somewhat freely to get a stable simulation.
* @property stiffness
* @type {Number}
*/
this.stiffness = Equation.DEFAULT_STIFFNESS;
/**
* The number of time steps needed to stabilize the constraint equation. Typically between 3 and 5 time steps.
* @property relaxation
* @type {Number}
*/
this.relaxation = Equation.DEFAULT_RELAXATION;
/**
* The Jacobian entry of this equation. 6 numbers, 3 per body (x,y,angle).
* @property G
* @type {Array}
*/
this.G = new Utils.ARRAY_TYPE(6);
for(var i=0; i<6; i++){
this.G[i]=0;
}
this.offset = 0;
this.a = 0;
this.b = 0;
this.epsilon = 0;
this.timeStep = 1/60;
/**
* Indicates if stiffness or relaxation was changed.
* @property {Boolean} needsUpdate
*/
this.needsUpdate = true;
/**
* The resulting constraint multiplier from the last solve. This is mostly equivalent to the force produced by the constraint.
* @property multiplier
* @type {Number}
*/
this.multiplier = 0;
/**
* Relative velocity.
* @property {Number} relativeVelocity
*/
this.relativeVelocity = 0;
/**
* Whether this equation is enabled or not. If true, it will be added to the solver.
* @property {Boolean} enabled
*/
this.enabled = true;
// Temp stuff
this.lambda = this.B = this.invC = this.minForceDt = this.maxForceDt = 0;
this.index = -1;
}
/**
* The default stiffness when creating a new Equation.
* @static
* @property {Number} DEFAULT_STIFFNESS
* @default 1e6
*/
Equation.DEFAULT_STIFFNESS = 1e6;
/**
* The default relaxation when creating a new Equation.
* @static
* @property {Number} DEFAULT_RELAXATION
* @default 4
*/
Equation.DEFAULT_RELAXATION = 4;
var qi = createVec2(),
qj = createVec2(),
iMfi = createVec2(),
iMfj = createVec2();
Equation.prototype = {
/**
* Compute SPOOK parameters .a, .b and .epsilon according to the current parameters. See equations 9, 10 and 11 in the <a href="http://www8.cs.umu.se/kurser/5DV058/VT09/lectures/spooknotes.pdf">SPOOK notes</a>.
* @method update
*/
update: function(){
var k = this.stiffness,
d = this.relaxation,
h = this.timeStep;
this.a = 4 / (h * (1 + 4 * d));
this.b = (4 * d) / (1 + 4 * d);
this.epsilon = 4 / (h * h * k * (1 + 4 * d));
this.needsUpdate = false;
},
/**
* Multiply a jacobian entry with corresponding positions or velocities
* @method gmult
* @return {Number}
*/
gmult: function(G,vi,wi,vj,wj){
return G[0] * vi[0] +
G[1] * vi[1] +
G[2] * wi +
G[3] * vj[0] +
G[4] * vj[1] +
G[5] * wj;
},
/**
* Computes the RHS of the SPOOK equation
* @method computeB
* @return {Number}
*/
computeB: function(a,b,h){
var GW = this.computeGW();
var Gq = this.computeGq();
var maxBias = this.maxBias;
if(Math.abs(Gq) > maxBias){
Gq = Gq > 0 ? maxBias : -maxBias;
}
var GiMf = this.computeGiMf();
var B = - Gq * a - GW * b - GiMf * h;
return B;
},
/**
* Computes G\*q, where q are the generalized body coordinates
* @method computeGq
* @return {Number}
*/
computeGq: function(){
var G = this.G,
bi = this.bodyA,
bj = this.bodyB,
ai = bi.angle,
aj = bj.angle;
return this.gmult(G, qi, ai, qj, aj) + this.offset;
},
/**
* Computes G\*W, where W are the body velocities
* @method computeGW
* @return {Number}
*/
computeGW: function(){
var G = this.G,
bi = this.bodyA,
bj = this.bodyB,
vi = bi.velocity,
vj = bj.velocity,
wi = bi.angularVelocity,
wj = bj.angularVelocity;
return this.gmult(G,vi,wi,vj,wj) + this.relativeVelocity;
},
/**
* Computes G\*Wlambda, where W are the body velocities
* @method computeGWlambda
* @return {Number}
*/
computeGWlambda: function(){
var G = this.G,
bi = this.bodyA,
bj = this.bodyB,
vi = bi.vlambda,
vj = bj.vlambda,
wi = bi.wlambda,
wj = bj.wlambda;
return this.gmult(G,vi,wi,vj,wj);
},
/**
* Computes G\*inv(M)\*f, where M is the mass matrix with diagonal blocks for each body, and f are the forces on the bodies.
* @method computeGiMf
* @return {Number}
*/
computeGiMf: function(){
var bi = this.bodyA,
bj = this.bodyB,
fi = bi.force,
ti = bi.angularForce,
fj = bj.force,
tj = bj.angularForce,
invMassi = bi.invMassSolve,
invMassj = bj.invMassSolve,
invIi = bi.invInertiaSolve,
invIj = bj.invInertiaSolve,
G = this.G;
scale(iMfi, fi, invMassi);
multiply(iMfi, bi.massMultiplier, iMfi);
scale(iMfj, fj,invMassj);
multiply(iMfj, bj.massMultiplier, iMfj);
return this.gmult(G,iMfi,ti*invIi,iMfj,tj*invIj);
},
/**
* Computes G\*inv(M)\*G'
* @method computeGiMGt
* @return {Number}
*/
computeGiMGt: function(){
var bi = this.bodyA,
bj = this.bodyB,
invMassi = bi.invMassSolve,
invMassj = bj.invMassSolve,
invIi = bi.invInertiaSolve,
invIj = bj.invInertiaSolve,
G = this.G;
return G[0] * G[0] * invMassi * bi.massMultiplier[0] +
G[1] * G[1] * invMassi * bi.massMultiplier[1] +
G[2] * G[2] * invIi +
G[3] * G[3] * invMassj * bj.massMultiplier[0] +
G[4] * G[4] * invMassj * bj.massMultiplier[1] +
G[5] * G[5] * invIj;
},
/**
* Add constraint velocity to the bodies.
* @method addToWlambda
* @param {Number} deltalambda
*/
addToWlambda: function(deltalambda){
var bi = this.bodyA,
bj = this.bodyB,
invMassi = bi.invMassSolve,
invMassj = bj.invMassSolve,
invIi = bi.invInertiaSolve,
invIj = bj.invInertiaSolve,
G = this.G;
// v_lambda = G * inv(M) * delta_lambda
addToVLambda(bi.vlambda, G[0], G[1], invMassi, deltalambda, bi.massMultiplier);
bi.wlambda += invIi * G[2] * deltalambda;
addToVLambda(bj.vlambda, G[3], G[4], invMassj, deltalambda, bj.massMultiplier);
bj.wlambda += invIj * G[5] * deltalambda;
},
/**
* Compute the denominator part of the SPOOK equation: C = G\*inv(M)\*G' + eps
* @method computeInvC
* @param {Number} eps
* @return {Number}
*/
computeInvC: function(eps){
var invC = 1 / (this.computeGiMGt() + eps);
return invC;
}
};
function addToVLambda(vlambda, Gx, Gy, invMass, deltalambda, massMultiplier){
vlambda[0] += Gx * invMass * deltalambda * massMultiplier[0];
vlambda[1] += Gy * invMass * deltalambda * massMultiplier[1];
}
contactequation
var Equation = require("./Equation"),
vec2 = require('../math/vec2');
module.exports = ContactEquation;
/**
* Non-penetration constraint equation. Tries to make the contactPointA and contactPointB vectors coincide, while keeping the applied force repulsive.
*
* @class ContactEquation
* @constructor
* @extends Equation
* @param {Body} bodyA
* @param {Body} bodyB
*/
function ContactEquation(bodyA, bodyB){
Equation.call(this, bodyA, bodyB, 0, Number.MAX_VALUE);
/**
* Vector from body i center of mass to the contact point.
* @property contactPointA
* @type {Array}
*/
this.contactPointA = vec2.create();
this.penetrationVec = vec2.create();
/**
* World-oriented vector from body A center of mass to the contact point.
* @property contactPointB
* @type {Array}
*/
this.contactPointB = vec2.create();
/**
* The normal vector, pointing out of body i
* @property normalA
* @type {Array}
*/
this.normalA = vec2.create();
/**
* The restitution to use (0=no bounciness, 1=max bounciness).
* @property restitution
* @type {Number}
*/
this.restitution = 0;
/**
* This property is set to true if this is the first impact between the bodies (not persistant contact).
* @property firstImpact
* @type {Boolean}
* @readOnly
*/
this.firstImpact = false;
/**
* The shape in body i that triggered this contact.
* @property shapeA
* @type {Shape}
*/
this.shapeA = null;
/**
* The shape in body j that triggered this contact.
* @property shapeB
* @type {Shape}
*/
this.shapeB = null;
}
ContactEquation.prototype = new Equation();
ContactEquation.prototype.constructor = ContactEquation;
ContactEquation.prototype.computeB = function(a,b,h){
var bi = this.bodyA,
bj = this.bodyB,
ri = this.contactPointA,
rj = this.contactPointB,
xi = bi.position,
xj = bj.position;
var n = this.normalA,
G = this.G;
// Caluclate cross products
var rixn = vec2.crossLength(ri,n),
rjxn = vec2.crossLength(rj,n);
// G = [-n -rixn n rjxn]
G[0] = -n[0];
G[1] = -n[1];
G[2] = -rixn;
G[3] = n[0];
G[4] = n[1];
G[5] = rjxn;
// Compute iteration
var GW, Gq;
if(this.firstImpact && this.restitution !== 0){
Gq = 0;
GW = (1/b)*(1+this.restitution) * this.computeGW();
} else {
// Calculate q = xj+rj -(xi+ri) i.e. the penetration vector
var penetrationVec = this.penetrationVec;
addSubSub(penetrationVec,xj,rj,xi,ri);
Gq = vec2.dot(n,penetrationVec) + this.offset;
GW = this.computeGW();
}
var GiMf = this.computeGiMf();
var B = - Gq * a - GW * b - h*GiMf;
return B;
};
function addSubSub(out, a, b, c, d){
out[0] = a[0] + b[0] - c[0] - d[0];
out[1] = a[1] + b[1] - c[1] - d[1];
}
var vi = vec2.create();
var vj = vec2.create();
var relVel = vec2.create();
/**
* Get the relative velocity along the normal vector.
* @method getVelocityAlongNormal
* @return {number}
*/
ContactEquation.prototype.getVelocityAlongNormal = function(){
this.bodyA.getVelocityAtPoint(vi, this.contactPointA);
this.bodyB.getVelocityAtPoint(vj, this.contactPointB);
vec2.subtract(relVel, vi, vj);
return vec2.dot(this.normalA, relVel);
};
Comments