top of page
Search
cedarcantab

p2 contact equation

base equation class


module.exports = Equation;

var vec2 = require('../math/vec2'),
    scale = vec2.scale,
    multiply = vec2.multiply,
    createVec2 = vec2.create,
    Utils = require('../utils/Utils');

/**
 * Base class for constraint equations.
 * @class Equation
 * @constructor
 * @param {Body} bodyA First body participating in the equation
 * @param {Body} bodyB Second body participating in the equation
 * @param {number} minForce Minimum force to apply. Default: -Number.MAX_VALUE
 * @param {number} maxForce Maximum force to apply. Default: Number.MAX_VALUE
 */
function Equation(bodyA, bodyB, minForce, maxForce){

    /**
     * Minimum force to apply when solving.
     * @property minForce
     * @type {Number}
     */
    this.minForce = minForce === undefined ? -Number.MAX_VALUE : minForce;

    /**
     * Max force to apply when solving.
     * @property maxForce
     * @type {Number}
     */
    this.maxForce = maxForce === undefined ? Number.MAX_VALUE : maxForce;

    /**
     * Cap the constraint violation (G*q) to this value.
     * @property maxBias
     * @type {Number}
     */
    this.maxBias = Number.MAX_VALUE;

    /**
     * First body participating in the constraint
     * @property bodyA
     * @type {Body}
     */
    this.bodyA = bodyA;

    /**
     * Second body participating in the constraint
     * @property bodyB
     * @type {Body}
     */
    this.bodyB = bodyB;

    /**
     * The stiffness of this equation. Typically chosen to a large number (~1e7), but can be chosen somewhat freely to get a stable simulation.
     * @property stiffness
     * @type {Number}
     */
    this.stiffness = Equation.DEFAULT_STIFFNESS;

    /**
     * The number of time steps needed to stabilize the constraint equation. Typically between 3 and 5 time steps.
     * @property relaxation
     * @type {Number}
     */
    this.relaxation = Equation.DEFAULT_RELAXATION;

    /**
     * The Jacobian entry of this equation. 6 numbers, 3 per body (x,y,angle).
     * @property G
     * @type {Array}
     */
    this.G = new Utils.ARRAY_TYPE(6);
    for(var i=0; i<6; i++){
        this.G[i]=0;
    }

    this.offset = 0;

    this.a = 0;
    this.b = 0;
    this.epsilon = 0;
    this.timeStep = 1/60;

    /**
     * Indicates if stiffness or relaxation was changed.
     * @property {Boolean} needsUpdate
     */
    this.needsUpdate = true;

    /**
     * The resulting constraint multiplier from the last solve. This is mostly equivalent to the force produced by the constraint.
     * @property multiplier
     * @type {Number}
     */
    this.multiplier = 0;

    /**
     * Relative velocity.
     * @property {Number} relativeVelocity
     */
    this.relativeVelocity = 0;

    /**
     * Whether this equation is enabled or not. If true, it will be added to the solver.
     * @property {Boolean} enabled
     */
    this.enabled = true;

    // Temp stuff
    this.lambda = this.B = this.invC = this.minForceDt = this.maxForceDt = 0;
    this.index = -1;
}

/**
 * The default stiffness when creating a new Equation.
 * @static
 * @property {Number} DEFAULT_STIFFNESS
 * @default 1e6
 */
Equation.DEFAULT_STIFFNESS = 1e6;

/**
 * The default relaxation when creating a new Equation.
 * @static
 * @property {Number} DEFAULT_RELAXATION
 * @default 4
 */
Equation.DEFAULT_RELAXATION = 4;

var qi = createVec2(),
    qj = createVec2(),
    iMfi = createVec2(),
    iMfj = createVec2();

Equation.prototype = {

    /**
     * Compute SPOOK parameters .a, .b and .epsilon according to the current parameters. See equations 9, 10 and 11 in the <a href="http://www8.cs.umu.se/kurser/5DV058/VT09/lectures/spooknotes.pdf">SPOOK notes</a>.
     * @method update
     */
    update: function(){
        var k = this.stiffness,
            d = this.relaxation,
            h = this.timeStep;

        this.a = 4 / (h * (1 + 4 * d));
        this.b = (4 * d) / (1 + 4 * d);
        this.epsilon = 4 / (h * h * k * (1 + 4 * d));

        this.needsUpdate = false;
    },

    /**
     * Multiply a jacobian entry with corresponding positions or velocities
     * @method gmult
     * @return {Number}
     */
    gmult: function(G,vi,wi,vj,wj){
        return  G[0] * vi[0] +
                G[1] * vi[1] +
                G[2] * wi +
                G[3] * vj[0] +
                G[4] * vj[1] +
                G[5] * wj;
    },

    /**
     * Computes the RHS of the SPOOK equation
     * @method computeB
     * @return {Number}
     */
    computeB: function(a,b,h){
        var GW = this.computeGW();
        var Gq = this.computeGq();
        var maxBias = this.maxBias;
        if(Math.abs(Gq) > maxBias){
            Gq = Gq > 0 ? maxBias : -maxBias;
        }
        var GiMf = this.computeGiMf();
        var B = - Gq * a - GW * b - GiMf * h;
        return B;
    },

    /**
     * Computes G\*q, where q are the generalized body coordinates
     * @method computeGq
     * @return {Number}
     */
    computeGq: function(){
        var G = this.G,
            bi = this.bodyA,
            bj = this.bodyB,
            ai = bi.angle,
            aj = bj.angle;

        return this.gmult(G, qi, ai, qj, aj) + this.offset;
    },

    /**
     * Computes G\*W, where W are the body velocities
     * @method computeGW
     * @return {Number}
     */
    computeGW: function(){
        var G = this.G,
            bi = this.bodyA,
            bj = this.bodyB,
            vi = bi.velocity,
            vj = bj.velocity,
            wi = bi.angularVelocity,
            wj = bj.angularVelocity;
        return this.gmult(G,vi,wi,vj,wj) + this.relativeVelocity;
    },

    /**
     * Computes G\*Wlambda, where W are the body velocities
     * @method computeGWlambda
     * @return {Number}
     */
    computeGWlambda: function(){
        var G = this.G,
            bi = this.bodyA,
            bj = this.bodyB,
            vi = bi.vlambda,
            vj = bj.vlambda,
            wi = bi.wlambda,
            wj = bj.wlambda;
        return this.gmult(G,vi,wi,vj,wj);
    },

    /**
     * Computes G\*inv(M)\*f, where M is the mass matrix with diagonal blocks for each body, and f are the forces on the bodies.
     * @method computeGiMf
     * @return {Number}
     */
    computeGiMf: function(){
        var bi = this.bodyA,
            bj = this.bodyB,
            fi = bi.force,
            ti = bi.angularForce,
            fj = bj.force,
            tj = bj.angularForce,
            invMassi = bi.invMassSolve,
            invMassj = bj.invMassSolve,
            invIi = bi.invInertiaSolve,
            invIj = bj.invInertiaSolve,
            G = this.G;

        scale(iMfi, fi, invMassi);
        multiply(iMfi, bi.massMultiplier, iMfi);
        scale(iMfj, fj,invMassj);
        multiply(iMfj, bj.massMultiplier, iMfj);

        return this.gmult(G,iMfi,ti*invIi,iMfj,tj*invIj);
    },

    /**
     * Computes G\*inv(M)\*G'
     * @method computeGiMGt
     * @return {Number}
     */
    computeGiMGt: function(){
        var bi = this.bodyA,
            bj = this.bodyB,
            invMassi = bi.invMassSolve,
            invMassj = bj.invMassSolve,
            invIi = bi.invInertiaSolve,
            invIj = bj.invInertiaSolve,
            G = this.G;

        return  G[0] * G[0] * invMassi * bi.massMultiplier[0] +
                G[1] * G[1] * invMassi * bi.massMultiplier[1] +
                G[2] * G[2] *    invIi +
                G[3] * G[3] * invMassj * bj.massMultiplier[0] +
                G[4] * G[4] * invMassj * bj.massMultiplier[1] +
                G[5] * G[5] *    invIj;
    },

    /**
     * Add constraint velocity to the bodies.
     * @method addToWlambda
     * @param {Number} deltalambda
     */
    addToWlambda: function(deltalambda){
        var bi = this.bodyA,
            bj = this.bodyB,
            invMassi = bi.invMassSolve,
            invMassj = bj.invMassSolve,
            invIi = bi.invInertiaSolve,
            invIj = bj.invInertiaSolve,
            G = this.G;

        // v_lambda = G * inv(M) * delta_lambda

        addToVLambda(bi.vlambda, G[0], G[1], invMassi, deltalambda, bi.massMultiplier);
        bi.wlambda += invIi * G[2] * deltalambda;

        addToVLambda(bj.vlambda, G[3], G[4], invMassj, deltalambda, bj.massMultiplier);
        bj.wlambda += invIj * G[5] * deltalambda;
    },

    /**
     * Compute the denominator part of the SPOOK equation: C = G\*inv(M)\*G' + eps
     * @method computeInvC
     * @param  {Number} eps
     * @return {Number}
     */
    computeInvC: function(eps){
        var invC = 1 / (this.computeGiMGt() + eps);
        return invC;
    }
};

function addToVLambda(vlambda, Gx, Gy, invMass, deltalambda, massMultiplier){
    vlambda[0] += Gx * invMass * deltalambda * massMultiplier[0];
    vlambda[1] += Gy * invMass * deltalambda * massMultiplier[1];
}


contactequation


var Equation = require("./Equation"),
    vec2 = require('../math/vec2');

module.exports = ContactEquation;

/**
 * Non-penetration constraint equation. Tries to make the contactPointA and contactPointB vectors coincide, while keeping the applied force repulsive.
 *
 * @class ContactEquation
 * @constructor
 * @extends Equation
 * @param {Body} bodyA
 * @param {Body} bodyB
 */
function ContactEquation(bodyA, bodyB){
    Equation.call(this, bodyA, bodyB, 0, Number.MAX_VALUE);

    /**
     * Vector from body i center of mass to the contact point.
     * @property contactPointA
     * @type {Array}
     */
    this.contactPointA = vec2.create();
    this.penetrationVec = vec2.create();

    /**
     * World-oriented vector from body A center of mass to the contact point.
     * @property contactPointB
     * @type {Array}
     */
    this.contactPointB = vec2.create();

    /**
     * The normal vector, pointing out of body i
     * @property normalA
     * @type {Array}
     */
    this.normalA = vec2.create();

    /**
     * The restitution to use (0=no bounciness, 1=max bounciness).
     * @property restitution
     * @type {Number}
     */
    this.restitution = 0;

    /**
     * This property is set to true if this is the first impact between the bodies (not persistant contact).
     * @property firstImpact
     * @type {Boolean}
     * @readOnly
     */
    this.firstImpact = false;

    /**
     * The shape in body i that triggered this contact.
     * @property shapeA
     * @type {Shape}
     */
    this.shapeA = null;

    /**
     * The shape in body j that triggered this contact.
     * @property shapeB
     * @type {Shape}
     */
    this.shapeB = null;
}
ContactEquation.prototype = new Equation();
ContactEquation.prototype.constructor = ContactEquation;
ContactEquation.prototype.computeB = function(a,b,h){
    var bi = this.bodyA,
        bj = this.bodyB,
        ri = this.contactPointA,
        rj = this.contactPointB,
        xi = bi.position,
        xj = bj.position;

    var n = this.normalA,
        G = this.G;

    // Caluclate cross products
    var rixn = vec2.crossLength(ri,n),
        rjxn = vec2.crossLength(rj,n);

    // G = [-n -rixn n rjxn]
    G[0] = -n[0];
    G[1] = -n[1];
    G[2] = -rixn;
    G[3] = n[0];
    G[4] = n[1];
    G[5] = rjxn;


    // Compute iteration
    var GW, Gq;
    if(this.firstImpact && this.restitution !== 0){
        Gq = 0;
        GW = (1/b)*(1+this.restitution) * this.computeGW();
    } else {
        // Calculate q = xj+rj -(xi+ri) i.e. the penetration vector
        var penetrationVec = this.penetrationVec;
        addSubSub(penetrationVec,xj,rj,xi,ri);
        Gq = vec2.dot(n,penetrationVec) + this.offset;
        GW = this.computeGW();
    }

    var GiMf = this.computeGiMf();
    var B = - Gq * a - GW * b - h*GiMf;

    return B;
};

function addSubSub(out, a, b, c, d){
    out[0] = a[0] + b[0] - c[0] - d[0];
    out[1] = a[1] + b[1] - c[1] - d[1];
}

var vi = vec2.create();
var vj = vec2.create();
var relVel = vec2.create();

/**
 * Get the relative velocity along the normal vector.
 * @method getVelocityAlongNormal
 * @return {number}
 */
ContactEquation.prototype.getVelocityAlongNormal = function(){

    this.bodyA.getVelocityAtPoint(vi, this.contactPointA);
    this.bodyB.getVelocityAtPoint(vj, this.contactPointB);

    vec2.subtract(relVel, vi, vj);

    return vec2.dot(this.normalA, relVel);
};

1 view0 comments

Recent Posts

See All

p2 naive broadphase

var Broadphase = require('../collision/Broadphase'); module.exports = NaiveBroadphase; /** * Naive broadphase implementation. Does N^2...

sopiro motor constranit

import { Matrix2, Vector2 } from "./math.js"; import { RigidBody } from "./rigidbody.js"; import { Settings } from "./settings.js";...

Comments


記事: Blog2_Post
bottom of page